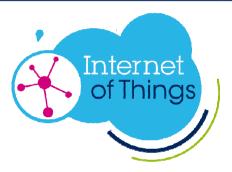
Technologies for Smart Industry

Joël Hartmann

Executive Vice President
Digital Front-End Manufacturing & Technology

- A global semiconductor leader
- 2017 revenues of \$8.35B with yearon-year growth of 19.7%
- Listed: NYSE, Euronext Paris and Borsa Italiana, Milan

- Research & Development
- Main Sales & Marketing
- Front-End
- Back-End



- Approximately 45,500 employees worldwide
- Approximately 7,400 people working in R&D
- 11 manufacturing sites
- Over 80 sales & marketing offices

Application Strategic Focus 3

The leading provider of products and solutions for Smart Driving and the Internet of Things

Smart Industry

Smart Home & City

Smart Things

From Industry to Smart Industry

18th century

20th century

1970's

St **Industrial** Revolution

Mechanical production equipment driven by water and steam power

2nd Industrial Revolution

Mass production achieved by division of labour concept and the use of electrical energy

3rd **Industrial** Revolution

Based on the use of electronics and IT to further automate production

⊿th **Industrial** Revolution

Use of cyber-physical systems, communications, IoT and decentralized decisions

All new machines

Change of driving mechanism

Machines largely replaced

Machines partially replaced - connected

The Evolution of Industry to Smart Industry

More efficient operation

Less waste

Safer working environments

Evolved man-machine cooperation

Producing more efficiently and in more environmentally friendly manner

Smart Industry

With a better and safer human experience

Responding to demand more flexibly and with more customization

Collecting and using manufacturing and supply chain **data** better

Big data & Cloud computing

Local, mass

customized production

Smart Industry

Trends, Dynamics & Applications

Key Trends

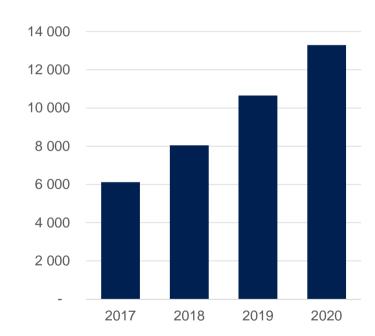
- Next levels of automation with distributed control
- Safer working environments & new man-machine interaction models
- Higher energy efficiency for industrial machinery
- Capture & exploitation of manufacturing data
- Artificial Intelligence & machine learning

Industry Dynamics

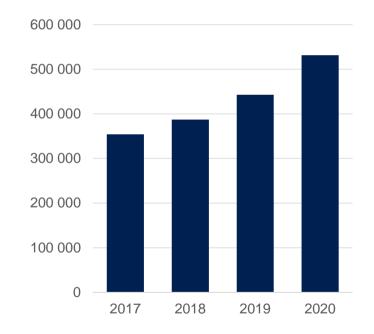
- Smart Industry initiatives (Industry 4.0, IIoT, ...)
- Integrated distributed manufacturing
- Flexible, reconfigurable factories
- Optimization of factory infrastructure life cycle
- Cloud-based condition monitoring & predictive maintenance

Key Applications

- · Smart manufacturing
- Factory automation
- Functional safety and security
- Condition monitoring and predictive maintenance
- Smart motion/motor control
- 3D printing
- Power & energy management
- Industrial robots
- Industrial lighting
- Sensors for industrial, medical, aerospace & defense



Smart Industry Opportunities _____


Units

Internet Connectable Industrial devices

Millions of installed devices

Annual Supply of Industrial Robots

Source: World Robotics 2017

Source: ABI Research 2017

Technology Enablers for Smart Industry

Safer More Efficient

Higher efficiency at all power usage points

- Power conversion & energy harvesting
- Power Management
- Power storage
- Motor Control

Components are more robust providing better safety for machines and operators

More Intelligent & Aware

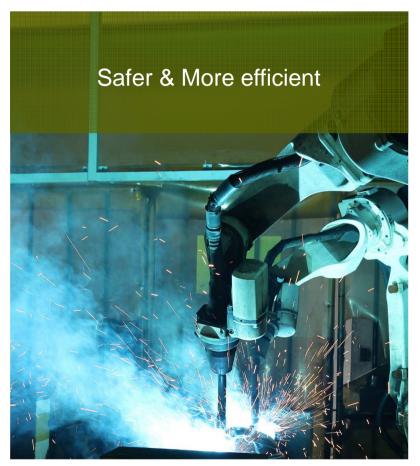
Sensors collect information about every machine and distributed local processing allows data to be turned into information

Safe & Secure real-time processing

Products contain the instructions for their manufacturing

Machines are aware of the people and provide easier and safer interactions

More Connected


Machines are connected inside the factory, to the larger supply chain and to the cloud

Real-time communication down to the lowest level (sensor & actuator)

All communications must be secure

Smart Industry

Technology Enablers

Safer & More Efficient

Analog & Digital inputs

MCU

Secure MCU

Motor Drivers

Gate Drivers

Intelligent Power Switches

Galvanically Isolated ICs

Safety Integrity Level (SIL) ICs ASICs with Embedded Diagnostics

Power Management

AC-DC Conversion

Digital Power

Power Modules & Discrete

MOSFET IGBT SiC

More Intelligent & Aware Controlling and information sharing down to the last node

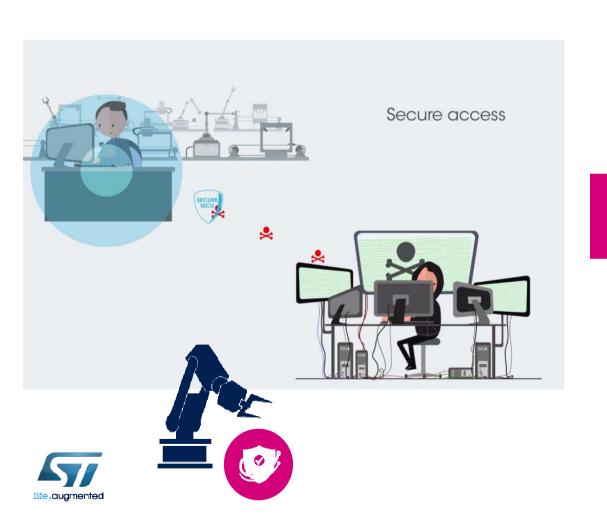
Technology Enablers More Intelligent and Aware

Secure **MCU** MCU Ranging & Acoustic **Proximity MEMS** sensors Signal Conditioning Motion **Environmental MEMS** sensors Industrial Sensors **Gate Drivers** ASICs with **Motor Drivers** with SPI and Embedded SiP with MCU

Diagnostics

Diagnostics

Technology Enablers

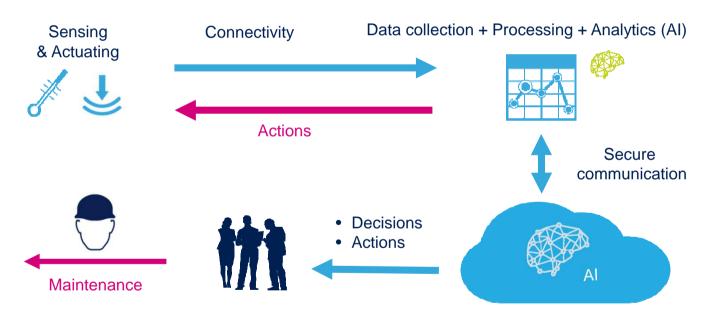

More Connected

USB RS485 Power line Wired IO link modem Type-C **RS232** Wi-Fi Wireless Sub-GHz Bluetooth module Contactless NFC Secure ESD & EMI MCU **MCU** Protection

Securing Industrial Devices Against Attack

Use the embedded security features of an **MCU**

Add a Secure Element for state-of-the-art security protection

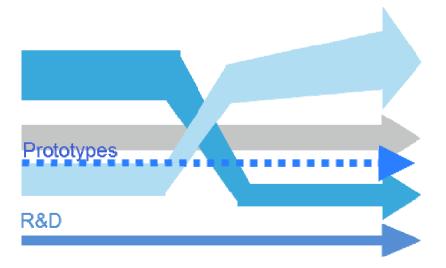


Predictive Maintenance 13

Predictive maintenance can reduce downtime by up to 50% with up to 40% cost savings on equipment & maintenance*

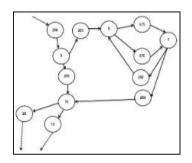
ST Crolles – Smart Industry in Action 14

60 000 m² of buildings - 40 hectares site area



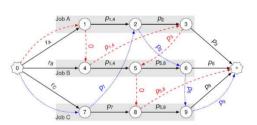
Demand Management

- Product Mix & Volume
- Technology development
- Prototyping
- Priorities


Fab Modelling & Simulation

- Production flows & capacity
- Equipment layout
- Automated Material Handling System

Digitized factory for traffic simulation

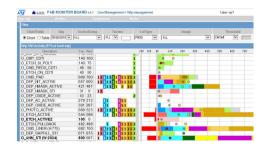

Topological representation of vehicle routing

Production flow projection at finite capacity

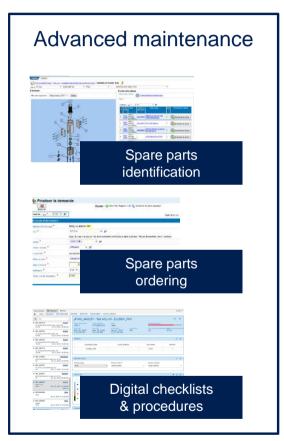
Modelling of complex flows

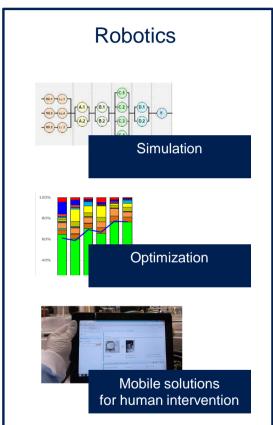
Fab Optimization & Execution

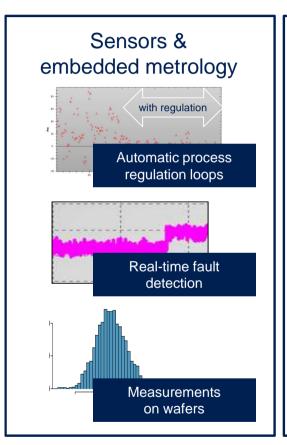
- Equipment configuration
- Scheduling & Dispatching & Routing
- Human Machine Interface (cockpit)


100 vehicles 45,000 transports/day 350T/day moved

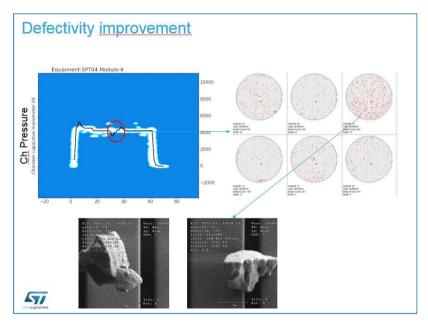
Real-time optimization over millions of combinations

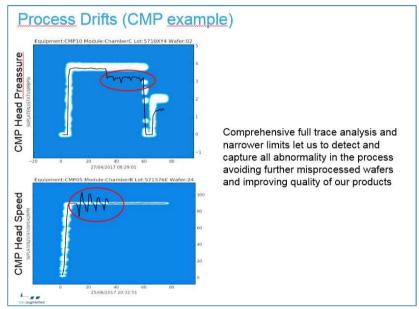



Real-time GUI for factory supervision

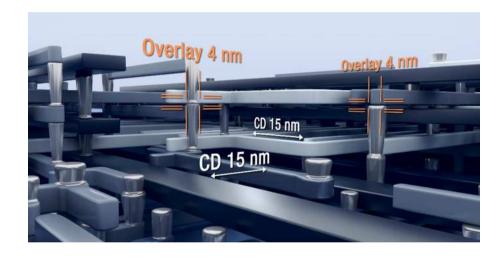


Tools & Enablers


Fault Detection & Classification Principle

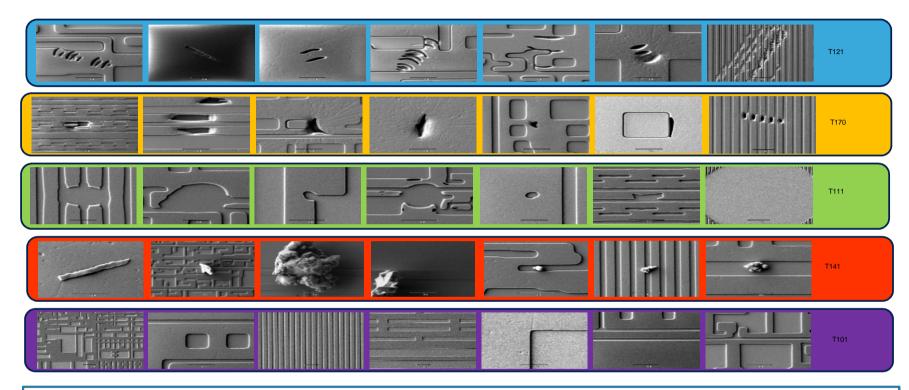

 Detecting equipment faults at the "moment" they occur based on equipment parameters to take appropriate corrective action

Equipment Sensor Data for Real-time Drift Detection



- Machine Learning algorithm (SVM)
- Wafer scrap reduction already seen in production
- Automatic control chart optimization and detect of new type of excursions

Virtual Metrology


- Bayesian networks
- Overlay is a key process parameter for Yield
- High number of overlay measurements (>1000 points) required during Front-End lot lifetime
- Statistical sampling solution is too limited
 - minimum measurements required to feed APC
 - need to keep wafer at risk to acceptable level
- Typical conflict between productivity and quality control

Source: https://medium.com/@ASML company/data-mining-uncovers-hidden-interactions-ea5c49e74318

Automatic Defect Classification 22

- Algorithm based on neural networks
- Able to detect and classify defects into 13 independent classes
- Very high classification success (96% above the 92% of manual classification)

Takeaways

- Smart Industry is the next evolution of the industrial world and it is happening now
- All of the enabling technologies for Smart industry are available today with new capabilities being added as each of the technologies evolves
- ST is implementing Smart industry methodologies in its factories today

